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Abstract

We present a diffeomorphic image registration algorithm to learn spatial transforma-

tions between pairs of images to be registered using fully convolutional networks

(FCNs) under a self-supervised learning setting. Particularly, a deep neural network is

trained to estimate diffeomorphic spatial transformations between pairs of images by

maximizing an image-wise similarity metric between fixed and warped moving

images, similar to those adopted in conventional image registration algorithms. The

network is implemented in a multi-resolution image registration framework to opti-

mize and learn spatial transformations at different image resolutions jointly and incre-

mentally with deep self-supervision in order to better handle large deformation

between images. A spatial Gaussian smoothing kernel is integrated with the FCNs to

yield sufficiently smooth deformation fields for diffeomorphic image registration. The

spatial transformations learned at coarser resolutions are utilized to warp the moving

image, which is subsequently used as input to the network for learning incremental

transformations at finer resolutions. This procedure proceeds recursively to the full

image resolution and the accumulated transformations serve as the final transforma-

tion to warp the moving image at the finest resolution. Experimental results for regis-

tering high-resolution 3D structural brain magnetic resonance (MR) images have

demonstrated that image registration networks trained by our method obtain robust,

diffeomorphic image registration results within seconds with improved accuracy

compared with state-of-the-art image registration algorithms.
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1 | INTRODUCTION

Medical image registration plays an important role in many medical

image analysis tasks (Sotiras, Davatzikos, & Paragios, 2013; Viergever

et al., 2016). To solve the medical image registration problem, the

most commonly used strategy is to seek a spatial transformation that

establishes pixel/voxel correspondence between a pair of fixed and
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moving images in an optimization framework, by maximizing a surro-

gate measure of the spatial correspondence between images, such as

image intensity correlation between the images to be registered

(Ashburner, 2007; Avants et al., 2011; Fan, Jiang, & Evans, 2002;

S. Klein, Staring, Murphy, Viergever, & Pluim, 2010; Rueckert

et al., 1999). Conventional medical image registration algorithms typi-

cally solve the image registration optimization problem using iterative

optimization algorithms, making the medical image registration com-

putationally expensive and time-consuming.

Recent medical image registration studies have leveraged deep

learning techniques to improve the computational efficiency of con-

ventional medical image registration algorithms, in addition to learning

image features for the image registration using stacked autoencoders

(Wu, Kim, Wang, Munsell, & Shen, 2016). In particular, deep learning

techniques have been used to build prediction models of spatial trans-

formations for achieving image registration under a supervised learn-

ing framework (Krebs et al., 2017; Rohé, Datar, Heimann,

Sermesant, & Pennec, 2017; Sokooti et al., 2017; Yang, Kwitt,

Styner, & Niethammer, 2017). Different from the conventional image

registration algorithms, the deep learning-based image registration

algorithms formulate the image registration as a multi-output regres-

sion problem (Krebs et al., 2017; Rohé et al., 2017; Sokooti

et al., 2017; Yang et al., 2017). They are designed to predict a spatial

relationship between image pixel/voxels from a pair of images based

on their image patches. The learned prediction model can then be

applied to images pixel/voxel-wisely to achieve the image registration.

The prediction-based image registration algorithms typically

adopt convolutional neural networks (CNNs) to learn informative

image features and a mapping between the learned image features

and spatial transformations that register images in a training dataset,

consisting of deformation fields and images that can be registered

by the deformation fields (Krebs et al., 2017; Rohé et al., 2017;

Sokooti et al., 2017; Yang et al., 2017). Similar to most deep learning

tasks, the quality of training data plays an important role in the

prediction-based image registration, and a variety of strategies have

been proposed to build training data, specifically the spatial transfor-

mations that register images in a training dataset (Krebs et al., 2017;

Rohé et al., 2017; Sokooti et al., 2017; Yang et al., 2017). Particu-

larly, synthetic deformation fields can be simulated and applied to a

set of images to generate new images so that the synthetic deforma-

tion fields can be used as training data to build a prediction model

(Sokooti et al., 2017). However, the synthetic deformation fields may

not effectively capture spatial correspondences between real images.

Spatial transformations that register pairs of images can also be esti-

mated using conventional image registration algorithms (Krebs

et al., 2017; Yang et al., 2017). However, a prediction-based image

registration model built upon such a training dataset is limited to

estimating spatial transformations captured by the adopted conven-

tional image registration algorithms. The estimation of spatial trans-

formations that register pairs of images can also be guided by shape

matching (Rohé et al., 2017). However, a large dataset of medical

images with manual segmentation labels is often not available for

training an image registration model.

The training data scarcity problem in deep learning-based image

registration could be overcome using unsupervised or self-supervised

learning techniques. A variety of deep learning algorithms have

adopted deep CNNs, in conjunction with spatial transformer network

(STN; Jaderberg, Simonyan, & Zisserman, 2015), to learn prediction

models for image registration of pairs of fixed and moving images in

an unsupervised learning fashion (A. V. Dalca, Balakrishnan, Guttag, &

Sabuncu, 2019; de Vos et al., 2019; Eppenhof, Lafarge, Veta, &

Pluim, 2019; Hering, van Ginneken, & Heldmann, 2019; Kim

et al., 2019; Krebs, Delingette, Mailhé, Ayache, & Mansi, 2019;

Kuang & Schmah, 2019; Lei et al., 2020; Li & Fan, 2017, 2018; Liu,

Hu, Zhu, & Heng, 2019; Mansilla, Milone, & Ferrante, 2020; T. C.

Mok & Chung, 2020a, 2020b; Yoo, Hildebrand, Tobin, Lee, &

Jeong, 2017; Yu et al., 2020; Zhang, Liu, Zheng, & Shi, 2020; Zhao,

Lau, Luo, Chang, & Xu, 2019). Particularly, fully convolutional net-

works (FCNs) that facilitate voxel-to-voxel learning (Long,

Shelhamer, & Darrell, 2015) are adopted to predict the deformation

field (A. V. Dalca et al., 2019; Kim et al., 2019; Kuang &

Schmah, 2019; Li & Fan, 2017, 2018; Mansilla et al., 2020; Yoo

et al., 2017; Zhao et al., 2019) using moving and fixed images as the

input to deep learning networks. The optimization of the image regis-

tration networks is driven by image similarity measures between the

fixed image and the warped moving image based on either image

intensity (A. V. Dalca et al., 2019; Kim et al., 2019; Kuang &

Schmah, 2019; Li & Fan, 2017, 2018; Mansilla et al., 2020; Zhao

et al., 2019) or contextual features (Yoo et al., 2017). The deformation

field can be modeled by sufficiently smooth velocity fields to facilitate

diffeomorphic image registration (Ashburner, 2007; Avants

et al., 2011), and such a strategy has been adopted in deep learning-

based image registration methods to favor diffeomorphic properties

of the transformation including preservation of topology and invert-

ible mapping (A. V. Dalca et al., 2019; T. C. Mok & Chung, 2020a;

Zhang et al., 2020). Although physically plausible deformation and

promising accuracy has been obtained, these registration methods are

carried out at a single spatial scale and might be trapped by local

optima, especially when registering images with large anatomical vari-

ability. Inspired by conventional image registration methods, multi-

stage and multi-resolution registration techniques are incorporated

into deep learning-based registration methods using cascaded net-

works (de Vos et al., 2019; Hering et al., 2019; Kim et al., 2019; Zhao

et al., 2019) and deep supervision (Eppenhof et al., 2019; Hering

et al., 2019; Krebs et al., 2019; Lei et al., 2020; Liu et al., 2019), yield-

ing improved performance compared with one-stage or single-scale

image registration. However, they are not equipped to achieve dif-

feomorphic registration. A deep Laplacian pyramid image registration

network (T. C. Mok & Chung, 2020b) has been recently proposed for

diffeomorphic image registration in a multi-resolution manner, demon-

strating promising image registration performance.

In this study, we propose an end-to-end learning framework to

optimize and learn diffeomorphic spatial transformations between

pairs of images to be registered in a multi-resolution diffeomorphic

image registration framework, referred to as MDReg-Net. In particu-

lar, our method trains FCNs to estimate voxel-to-voxel velocity fields
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of spatial transformations for registering images by maximizing their

image-wise similarity metric, similar to conventional image registration

algorithms. To account for potential large deformations between

images, a multi-resolution strategy is adopted to jointly optimize and

learn vocity fields for spatial transformations at different spatial reso-

lutions progressively in an end-to-end learning framework. The veloc-

ity fields estimated at lower resolutions are used to warp the moving

image and the warped moving image is used as the input to the subse-

quent sub-network to estimate the residual velocity fields for spatial

transformations at higher resolutions. The image similarity measures

between the fixed and warped moving images are evaluated at differ-

ent image resolutions to serve as deep self-supervision so that FCNs

at different spatial resolutions are jointly learned. A spatial Gaussian

smoothing kernel is integrated with the FCNs to yield sufficiently

smooth deformation fields to achieve diffeomorphic image registra-

tion. Our method has been evaluated based on 3D structural brain

magnetic resonance (MR) images and obtained diffeomorphic image

registration with better performance than state-of-the-art image reg-

istration algorithms.

2 | METHODS

2.1 | Image registration by optimizing an image
similarity metric

Given a pair of fixed image If and moving image Im, the task of image

registration is to seek a spatial transformation that establishes pixel/

voxel-wise spatial correspondence between the two images. The spa-

tial correspondence can be gauged with a surrogate measure, such as

an image intensity similarity measure between the fixed and trans-

formed moving images, and therefore the image registration problem

can be solved in an optimization framework by optimizing a spatial

transformation that maximizes the image similarity measure between

the fixed image and transformed moving image. For nonrigid image

registration, the spatial transformation is often characterized by a

dense deformation field D that encodes displacement vectors

between spatial coordinates of If and their counterparts in Im. For

mono-modality image registration, mean squared intensity difference

and normalized correlation coefficient (NCC) are often adopted as the

surrogate measures of image similarity.

As the image registration problem is an ill-posed problem, regular-

ization techniques are usually adopted in image registration algorithms

to obtain a spatially smooth and physically plausible deformation field

(Sotiras et al., 2013; Viergever et al., 2016). In general, the

optimization-based image registration problem is formulated as

min
D

�S If xð Þ, Im D ∘xð Þð ÞþλR Dð Þ, ð1Þ

where D is the deformation field to be optimized, x represents spatial

coordinates of pixel/voxels in If, D ∘x represents deformed spatial

coordinates of pixel/voxels by D in Im, S I1, I2ð Þ is an image similarity

measure, R Dð Þ is a regularizer on the deformation field, and λ controls

the trade-off between the image similarity measure and the regulari-

zation on the deformation field.

The regularization is typically adopted to encourage the deforma-

tion field to be spatially smooth by minimizing magnitude of deriva-

tives of the spatial transformation, such as square L2-norm, total

variation, and learning-based regularizer (Niethammer, Kwitt, &

Vialard, 2019; Vishnevskiy, Gass, Szekely, Tanner, & Goksel, 2017). To

facilitate diffeomorphic image registration, the deformation field can

be represented by integration of velocity fields v, that is, D¼Φ vð Þ
(Ashburner, 2007; Avants et al., 2011), and the regularization is

directly applied to the velocity fields to obtain spatially smooth veloc-

ity fields and diffeomorphic deformation fields accordingly.

The image registration optimization problem can be solved by

gradient descent based methods (Sotiras et al., 2013; Viergever

et al., 2016). However, such an optimization-based image registration

task is typically computational expensive and time consuming. Instead

of optimizing D directly, the deformation field can be predicted using

FCNs under an unsupervised setting (Li & Fan, 2017, 2018). However,

the estimated deformation field may not be fold-free or invertible

even a large smooth regularization term is adopted (A. V. Dalca

et al., 2019; T. C. Mok & Chung, 2020a; Zhang et al., 2020).

2.2 | Multi-resolution diffeomorphic image
registration with deep self-supervision

We adopt a multi-resolution image registration procedure to estimate

the velocity and deformation fields progressively from coarse to fine

spatial resolutions for its effectiveness for handling large deformation

between images, as demonstrated in conventional image registration

algorithms (Sotiras et al., 2013; Viergever et al., 2016). The overall

framework of our multi-resolution image registration method is illus-

trated in Figure 1a, with three different resolutions involved. Particu-

larly, the velocity fields are estimated incrementally from coarse to

fine resolutions with L levels (l¼1 and l¼ L refer to the coarsest and

finest spatial resolutions, respectively), which are optimized jointly

and formulated as

min
vl

XL

l¼1

�S Ilf xð Þ, Ilm Φ evl� �
∘x

� �� �
þλR vl

� �
, ð2Þ

where Ilf and Ilm denote fixed and moving images at resolution level l,

vl is the incremental velocity fields at level l, and evl is the accumulated

velocity fields of the deformation field at level l, computed as

evl ¼Xl

i¼1

vi if l>1andev1 ¼ v1: ð3Þ

For the deformation field Φ v1
� �

at the coarsest resolution (l¼1), a

sub-network S1 with a U-Net (Ronneberger, Fischer, & Brox, 2015)

architecture is utilized to estimate velocity fields v1 and a moving

image to be registered to a fixed image are concatenated with the
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fixed image as a two-channel input to sub-network S1. For the defor-

mation field at a finer resolution (l> 1), a dedicated sub-network Sl is

adopted to estimate the velocity field increment vl using a concatena-

tion of the warped moving image and the fixed image as an input to

the sub-network. Particularly, the moving image is warped by the

deformation field Φ evl� �
obtained at its coarser resolution. The sub-

network Sl is optimized to learn the deformation field that captures

the residual variation between the warped moving image and the

fixed image after deformation at all preceding coarser resolutions.

Finally, the accumulated velocity fields evL over all the resolutions are

utilized to obtain the deformation field at the finest resolution.

Similar to the conventional multi-resolution image registration

algorithms, the similarity of registered images at different resolutions

is maximized in our network to serve as deep supervision (Chen-Yu,

Saining, Patrick, Zhengyou, & Zhuowen, 2014), but without relying on

any supervised information of the deformation fields. Such a

F IGURE 1 Schematic illustration of the multi-resolution diffeomorphic image registration based on FCNs. (a) Overall architecture of the
multi-resolution image registration framework and (b) detailed network structure for voxel-to-voxel multi-output regression of velocity fields at
different image resolutions. The number next to each network block denotes the number of its filters, and the number on each network block
denotes the image resolution
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supervised learning with surrogate supervised information is referred

to as self-supervision in this study. As it is capable of obtaining both

deformation and inverse deformation fields for the moving and fixed

images from the velocity fields under the diffeomorphic image regis-

tration setting, our multi-resolution image registration model is formu-

lated to optimize both the deformation and inverse deformation fields

jointly

min
vl

XL

l¼1

�S Ilf xð Þ, Ilm Φ evl� �
∘x

� �� �
�S Ilm xð Þ, Ilf Φ� evl� �

∘x
� �� �

þλR vl
� �

,

ð4Þ

where normalized cross-correlation (NCC) is adopted as the image

similarity measure S If , Imð Þ, R vð Þ¼PN
n¼1 rv nð Þk k1, N is the number of

pixel/voxels in the velocity field, and λ is the hyper-parameter to bal-

ance the image similarity and deformation regularization terms.

Different from conventional multi-resolution image registration

algorithms that perform multi-stage optimization with their deforma-

tion fields at coarse resolutions used as initialization inputs to the

image registration at a finer resolution, our deep learning-based

method jointly optimizes deformation fields at all spatial resolutions

with an end-to-end deep learning setting. As the optimization of the

loss function proceeds, the parameters within the network will be

updated through the feedforward computation and backpropagation

procedure, leading to improved prediction of deformation fields.

2.3 | Network architecture for estimating the
velocity fields

In our multi-resolution image registration network, one dedicated sub-

network is designed to estimate the velocity fields or the velocity field

increment at each spatial resolution. The sub-network at the coarsest

spatial resolution is optimized to learn the velocity fields to capture

large deformation, while the sub-networks at finer resolutions are

optimized to learn residual deformation to achieve an accurate image

registration.

In this study, stationary velocity fields (SVFs) v are adopted to

represent the deformation field as

∂D tð Þ

∂t
¼ v D tð Þ

� �
, ð5Þ

where D is the deformation field, D 0ð Þ ¼ Id is the identity transforma-

tion, and t¼ 0,1½ � is time. The integration of SVFs Φ vð Þ using scaling

and squaring method (Ashburner, 2007; A. V. Dalca et al., 2019) is

adopted to compute the deformation field D numerically. Particularly,

the sub-network used at each resolution in our study is specified as

one U-Net with both encoder and decoder paths, as illustrated in

Figure 1b. The encoder path of all the sub-networks share the same

structure, consisting of one convolutional layer with 16 filters,

followed by three convolutional layers with 32 filters, and all have a

stride of 2. The decoder path of the sub-networks from coarse to fine

resolutions has one, two, and three deconvolutional layers, each with

32 filters and a stride of 2, followed by two convolution layers with

32 and 16 filters, respectively, and one output convolutional layer to

predict the SVFs at three different spatial resolutions. For a particular

sub-net, the predicted SVF is integrated using the scaling and squaring

operation to obtain the deformation field at different spatial resolu-

tions. LeakyReLu activation is used for all the convolutional and dec-

onvolutional layers except the output layer. The number of output

channels d is 3, corresponding to the spatial dimensionality of the

input images. The kernel size in all layers are set to 3�3�3. The

multi-resolution images used for computing the image similarity in the

loss function at different resolutions are obtained using average

pooling. Specifically, the original image serves as the image at the fin-

est (full) resolution, and images at reduced resolutions are obtained by

applying average pooling to the original image recursively with a ker-

nel size of 3�3�3 and a stride of 2.

In the present study, SVFs are learned at 1
8,

1
4, and

1
2 resolutions to

reduce the computational memory consumption, and the SVFs at the

full resolution are obtained from the output of the 1
2 resolution using

linear interpolation. The deformation field is computed from the SVFs

with the number of time steps set to 7 (A. V. Dalca et al., 2019). A spa-

tial smoothing layer, implemented as Gaussian kernel smoothing, is

adopted as part of our deep learning network to smooth the deforma-

tion fields at the finest resolution in the end-to-end learning frame-

work as illustrated in Figure 1a. The integration of the spatial

smoothing in our deep learning model facilitates the interaction

between the learning of deformation fields and spatial smoothing to

favor the diffeomorphic image registration. The spatial smoothing

operation is applied to the deformation field at the finest resolution,

as used in ANTs (Avants et al., 2011).

Our image registration model is implemented using Tensorflow

(Abadi et al., 2016). Adam optimization technique (Kingma &

Ba, 2014) is adopted to train the networks. Once the training proce-

dure is finished, the trained network can be directly used to register

new images with feedforward computation.

3 | EVALUATION AND EXPERIMENTAL
SETTINGS

3.1 | Image datasets

We evaluated our method based on two public brain imaging datasets

with manual segmentations of fine-grained brain structures, including

(a) MICCAI 2012 Multi-Atlas Labelling Challenge (MALC) dataset con-

sisting of T1 brain MR images from 30 subjects with fine-grained

whole-brain annotation for 134 structures (Landman &

Warfield, 2012), and (b) Mindboggle-101 dataset consisting of T1

brain MR images from 101 healthy subjects with 50 manual annotated

cortical structures (A. Klein & Tourville, 2012). These images were

used for testing only.

T1 brain MR images of 901 young subjects from PING dataset

(Jernigan et al., 2016) were adopted to train our image registration
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model. Particular, images of 801 subjects were used for training, and

images of the remaining 100 subjects were used for tuning the hyper-

parameter λ. In addition, T1 brain MR images of 809 old subjects from

ADNI 1 cohort (http://adni.loni.usc.edu) were adopted for training a

second image registration model from scratch to investigate the influ-

ences of different training data to the image registration performance.

It is worth noting that our training and testing datasets were obtained

from different cohorts and sites to evaluate our method’s generaliza-
tion performance.

All the images for model training and testing were preprocessed

using FreeSurfer (Fischl, 2012), including skull-stripping, intensity nor-

malization and spatial alignment using affine registration. All the

images were resampled with a spatial resolution of 1�1�1 mm3 and

cropped with a size of 176�192�176. Segmentation labels with

30 brain structures were also obtained using FreeSurfer for each sub-

ject from PING dataset, which were adopted to tune the hyper-

parameter λ.

3.2 | Evaluation metrics

As it is nontrivial to obtain the ground truth deformation between any

pair of images, we adopted the similarity of the anatomical segmenta-

tions of the fixed image and warped moving image as a surrogate met-

ric of registration accuracy (Rohlfing, 2011). Particularly, the trained

registration model was applied to register all the testing images to one

random selected template image, and the generated deformation

fields were used to warp their corresponding segmentation labels.

Dice score between the warped segmentation and the template seg-

mentation images was used to evaluate the registration performance.

Although Dice score between anatomical structures is a reliable surro-

gate measure to quantify image registration accuracy, higher Dice

score alone does not necessarily mean biologically plausible image

registration as a deformation field with folding voxels could also lead

to image registration with high regional Dice score. Therefore, we also

evaluated the diffeomorphic property of the obtained deformation in

addition to Dice score. Particularly, we calculated the Jacobian deter-

minant JΦj j of the deformation field Φ obtained and counted all the

voxels v whose JΦ vð Þj j is non-positive within the brain region. We

have also evaluated the registration performance on images registered

with the deformation fields computed in the opposite direction, that

is, registering fixed images to moving images, based on the same

velocity fields.

3.3 | Network training

We trained pairwise registration models by randomly selecting one

pair of images as the input to the network. Given a set of n images,

we obtained n2 pairs of fixed and moving images, including pairs of

the same images, such that every image can serve as the fixed image.

The learning rate was set to 0.0001 and batch size was set to

1. The networks were trained on one NVIDIA TITAN Xp GPU, and

150,000 iterations were adopted for the training. We have trained

our registration model with different hyper-parameter λ values

(λ� 0:1,0:2,0:35,0:5,0:75,1½ �) using the PING training dataset and

selected the λ values that obtained the highest Dice score on the

PING validation dataset using the FreeSurfer segmentation labels

while no voxels with non-positive JΦ vð Þj j existed in the obtained

deformation fields. For the Gaussian kernel smoothing, the σ of the

Gaussian kernel was set to 1.732 voxels and the kernel size was set to

3�3�3, according to the default value used in ANTs (Avants

et al., 2011).

3.4 | Comparison with state-of-the-art image
registration algorithms and ablation studies

We compared our method with representative medical image registra-

tion algorithms, including NiftyReg (Modat et al., 2010), ANTs (Avants

et al., 2011), VoxelMorph (Adrian V Dalca, Balakrishnan, Guttag, &

Sabuncu, 2018), ProbMultilayer network (Liu et al., 2019), and LapIRN

(T. C. Mok & Chung, 2020b), based on the two testing datasets. Par-

ticularly, the default setting of NiftyReg was adopted. For ANTs based

image registration, two configurations with different spatial smooth-

ing regularization parameters were adopted with following command:

ANTS 3 -m CC[fixed,moving,1,2] -t SyN[0.25] -r Gauss[9,0.2] (or -r

Gauss[3,1.0]) -o output -i 201x201x201 --number-of-affine-iterations

100x100x100 --use-Histogram-Matching 0. The configuration with

the small smoothing size is referred to as ANTs-c1, and the one with

the larger smoothing size is referred to as ANTs-c2. For the

VoxelMorph model, bi-directional image similarity based loss was

adopted, and the number of time steps was set to 7 for computing

the deformation field from the velocity field. The VoxelMorph model

shared the same training strategy and setting as the proposed

method, and its hyper-parameters were also optimized to obtain the

highest Dice scores based on the PING validation dataset. For the

ProbMultilayer model and LapIRN model, the default setting was

adopted, and they shared the same training strategy as the proposed

method.

The comparison with VoxelMorph serves as an ablation study to

evaluate if the multi-resolution strategy could improve the image reg-

istration. As an additional ablation study, we also investigated the per-

formance of our method without the spatial smoothing layer by

optimizing λ to obtain the diffeomorphic image registration on the

PING validation dataset.

4 | EXPERIMENTAL RESULTS

4.1 | Optimal parameter setting

Figure 2 shows the average Dice score and number of voxels with

non-positive JΦ vð Þj j in the obtained deformation fields for the PING

validation dataset with different values of hyper-parameter λ. It can

be observed that the Dice scores reached the maximum when λ was
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around 0.35, while all the voxels had positive JΦ vð Þj j in the obtained

deformation fields when λ was equal to or larger than 0.35. We

adopted the registration model with λ¼0:35 for all the following eval-

uation unless specified otherwise.

4.2 | Quantitative performance of image
registration algorithms under comparison

The average Dice scores calculated over all anatomical structures and

subjects obtained by different registration methods for two testing

datasets are summarized in Table 1. All the deformable registration

methods obtained significantly higher Dice scores than the affine

image registration (p<4�10�7, Wilcoxon signed rank test), and our

method obtained deformation fields with the minimal number of

voxels with non-positive Jacobian determinant among all the methods

under comparison. Our method also obtained Dice scores close to

those obtained by ANTs-c1 and both of them ranked top in the

deformable registration methods under comparison. Figures 3 and 4

show Dice scores of individual anatomical structures of MALC and

Mindboggle-101 datasets respectively, where the structures are pres-

ented in ascending order by their volumetric sizes (from small to large

regions), and the Dice scores of the same anatomical structure from

left and right brain hemispheres are combined. Our method was com-

parable to ANTs-c1 in terms of Dice score for most structures and

outperformed the VoxelMorph, LapIRN, and ProbMultilayer model for

most structures across both data sets with either coarse-grained

(Mindboggle-101 dataset) or fine-grained (MALC dataset) structures.

Example images before and after the image registration by different

methods and their corresponding anatomical segmentations on two

testing datasets are demonstrated in Figures 5a,b and 6a,b.

Example deformation fields and their corresponding Jacobian

determinant maps for each dataset obtained by ANTs-c1,

VoxelMorph, LapIRN, ProbMultilayer, and our method are shown in

Figures 5c,d and 6c,d, respectively. While there were several localized

clusters of voxels with non-positive Jacobian determinant in the

deformation fields obtained by ANTs-c1 and LapIRN, nearly all voxels

in the deformation fields obtained by VoxelMorph, ProbMultilayer,

and our method were with positive Jacobian determinant, preserving

good diffeomorphic property. As shown in Table 1, the average num-

ber of voxels with non-positive Jacobian determinant in the deforma-

tion fields obtained by our method (�0.1) was substantially smaller

than those obtained by all other methods under comparison, including

ANTs-c1 (�9,000), LapIRN (�3,000), VoxelMorph (�5), and

ProbMultilayer (�0.4). These results indicate that incorporating the

spatial smoothing layer in our method largely eliminated folding voxels

in the deformation fields without sacrificing registration accuracy.

Although the folding voxels in the deformation fields obtained by

ANTs could be eliminated by increasing the spatial smoothing during

the registration, over-smoothing inevitably leads to degraded registra-

tion accuracy. As summarized in Table 1, ANTs-c2 obtained image

registration with a much smaller number of folding voxels compared

with that obtained by ANTs-c1, but its Dice score decreased

dramatically.

The average time used to register one pair of images by different

registration methods are presented in Table 2. Our method,

ProbMultilayer, and VoxelMorph took about 4.67, 4.29, and 3.82 s

respectively when run on an NIVIDIA TITAN Xp GPU, and LapIRN

took about 6.46 s when run on an NVIDIA TITAN RTX GPU, much

faster than NiftyReg and ANTs which took about 257 and 1,071 s on

average when run on an Intel Xeon E5-2660 CPU. On CPUs, our

method took about 74.07 s to register one pair of images, faster than

NiftyReg and ANTs.

As a deep learning-based image registration model, the perfor-

mance of the proposed method might be affected by the datasets

used for training the image registration model due to the anatomical

variations in different datasets. Therefore, we further trained image

registration models using the proposed method, VoxelMorph, LapIRN,

and ProbMultilayer on an image dataset from ADNI 1 cohort with the

same training procedure as described previously and evaluated their

performance on the two testing datasets. As summarized in Table 1,

the image registration models trained on different datasets by our

method had more stable and better image registration performance

than those trained by VoxelMorph, LapIRN, and ProbMultilayer, dem-

onstrating that our method is robust and capable of learning anatomi-

cal variations from different images.

Without the spatial smoothing layer, larger regularization parame-

ter λ was required to achieve diffeomorphic image registration. We

trained image registration models without the spatial smoothing layer

with different λ values on the PING training dataset to identify λ value

capable of generating deformation fields free of voxels with non-posi-

tive Jacobian determinant on the PING validation dataset. As shown

in Figure 7a, λ¼1:0 produced an image registration model that regis-

tered the images of the PING validation dataset without any folding

voxels, while λ¼0:5 produced an image registration model that regis-

tered the images of the PING validation dataset with the maximal

Dice score that was estimated based on the brain structures labeled

by FreeSurfer. Figure 7b shows numbers of voxels with non-positive

F IGURE 2 Dice score and number of voxels with non-positive
JΦ vð Þj j in the obtained deformation fields of the PING validation
dataset for the proposed model with different λ values. The
registration model with λ¼0:35 was adopted for all the evaluation
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Jacobian determinant of the ADNI1 images that were registered by

the image registration models trained on the PING dataset with and

without the spatial smoothing layer, respectively. Specifically, the

average number of voxels with non-positive Jacobian determinant in

the deformation fields obtained by MDReg-Net with the spatial

smoothing layer was significantly less than that obtained by MDReg-

Net without the spatial smoothing layer though a larger regularization

parameter was used (p¼3:59�10�7, Wilcoxon signed rank test). At

the subject level, the deformation fields of 31 out of 809 images

obtained by MDReg-Net with the spatial smoothing layer contained

voxels with non-positive Jacobian determinant, while 88 had defor-

mation fields containing voxels with non-positive Jacobian determi-

nant out of 809 images registered by MDReg-Net without the spatial

smoothing layer. In terms of image registration accuracy measured by

Dice scores on brain structures labeled by FreeSufer, MDReg-Net

with and without the spatial smoothing layer obtained Dice scores of

0:782�0:115 (mean � standard deviation) and 0:777�0:116,

respectively (p<1�10�10, Wilcoxon signed rank test).

The image registration accuracy of MDReg-Net image registration

models with and without the spatial smoothing layer on the two test-

ing datasets is summarized in Table 3. Particularly, two MDReg-Net

image registration models without the spatial smoothing layer were

obtained with λ set to 0.5 and 1.0, respectively. Not surprisingly,

MDReg-Net without the spatial smoothing layer could obtain better

image registration accuracy than MDReg-Net with the spatial smooth-

ing layer when λ¼0:5 at the cost of sacrificing the diffeomorphism. In

TABLE 1 Average Dice score, number and percentage of voxels with non-positive Jacobian determinant for affine alignment, NiftyReg, ANTs
(SyN), VoxelMorph, ProbMultilayer, LapIRN, and the proposed method (referred to as MDReg-Net) on different testing datasets

Methods

MALC Mindboggle-101

Avg. Dice JΦj j≤0 (#) JΦj j≤0 (%) Avg. Dice JΦj j≤0 (#) JΦj j≤0 (%)

Affine 0.429 (0.182) – – 0.347 (0.093) – –

NiftyReg 0.576 (0.184) – – 0.471 (0.126) – –

ANTs-c1 0.597 (0.187) 9,571 (3,384) 0.58 (0.21) 0.538 (0.130) 4,349 (1,081) 0.74 (0.18)

ANTs-c2 0.568 (0.188) 126 (187.7) 7.6e�3 (1.1e�2) 0.482 (0.130) 29 (49.1) 4.9e�3 (8.3e�3)

VoxelMorph (PING) 0.572 (0.182) 3.68 (7.7) 2.2e�4 (4.7e�4) 0.472 (0.117) 0.58 (1.98) 9.8e�5 (3.3e�4)

VoxelMorph (ADNI1) 0.568 (0.182) 4.53 (9.8) 2.7e�4 (6.0e�4) 0.476 (0.113) 0.32 (2.33) 5.4e�5 (3.9e�4)

ProbMultilayer (PING) 0.578 (0.181) 0.26 (1.54) 1.6e�5 (9.4e�5) 0.486 (0.106) 0.03 (0.3) 5.1e�6 (5.1e�5)

ProbMultilayer (ADNI1) 0.573 (0.181) 0.35 (1.89) 2.1e�5 (1.1e�4) 0.482 (0.105) 0 (0) 0 (0)

LapIRN (PING) 0.546 (0.186) 2,642 (2,088) 0.16 (0.13) 0.475 (0.097) 2,009 (920) 0.34 (0.16)

LapIRN (ADNI1) 0.547 (0.185) 2,585 (2,074) 0.16 (0.13) 0.477 (0.097) 1,533 (665) 0.26 (0.11)

MDReg-Net (PING) 0.588 (0.180) 0.089 (0.515) 5.4e�6 (3.1e�5) 0.534 (0.094) 0 (0) 0 (0)

MDReg-Net (ADNI1) 0.587 (0.172) 0.029 (0.172) 1.8e�6 (1.0e�5) 0.530 (0.092) 0.07 (0.7) 1.2e�5 (1.2e�4)

Note: The performance of VoxelMorph, ProbMultilayer, LapIRN, and MDReg-Net trained using ADNI 1 dataset are also presented. The SDs are shown in

parentheses. The average and standard deviation of Dice score were calculated over all anatomical structures and subjects. The statistics of voxels with

non-positive Jacobian determinant were calculated within brain region.

F IGURE 3 Boxplots of Dice score of 25 randomly selected anatomical structures for Affine, NiftyReg, ANTs (c1 and c2), VoxelMorph (VM),
LapIRN, ProbMultilayer, and our method (MDReg-Net) on the MALC dataset. Dice scores of the same structure from left and right brain
hemispheres are combined. Brain structures are displayed in ascending order by their volumetric sizes from left to right
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contrast, MDReg-Net with the spatial smoothing layer could achieve

diffeomorphic, albeit not perfect, image registration without sacrific-

ing the image registration accuracy too much, compared with MDReg-

Net without the spatial smoothing layer but with a larger regulariza-

tion (when λ¼1:0). Moreover, the predicted velocity field performed

well in the opposite direction-based image registration. As summa-

rized in Table 3, no significant differences were observed in the regis-

tration performance between the two opposite directions for

registering images, demonstrating the good inverse consistency of our

method.

5 | DISCUSSION AND CONCLUSIONS

We present an end-to-end deep learning framework for dif-

feomorphic image registration. Our method trains FCNs to estimate

F IGURE 4 Boxplots of Dice score of anatomical structures for Affine, NiftyReg, ANTs (c1 and c2), VoxelMorph (VM), LapIRN, ProbMultilayer,
and our method (MDReg-Net) on the Mindboggle-101 dataset. Dice scores of the same structure from left and right brain hemispheres are
combined. Brain structures are displayed in ascending order by their volumetric sizes from left to right

F IGURE 5 Example images before and after the image registration, obtained by the image registration algorithms under comparison on
MALC dataset. (a) Fixed image, moving image, and warped moving images by NiftyReg, ANTs-c1, VoxelMorph (VM), LapIRN, ProbMultilayer, and
our method (MDReg-Net). (b) Segmentations of fixed and moving image, and warped segmentation of moving image by different registration
methods. (c) Deformation fields obtained by ANTs-c1, VM, LapIRN, ProbMultilayer, and MDReg-Net to register the moving image to the fixed
image. Deformation in each spatial dimension is mapped to one of the RGB color channels for the visualization. (d) Jacobian determinant maps of
the deformation fields shown in (c). Localized clusters of voxels with non-positive Jacobian determinant are pointed out by the arrows. The
average numbers of voxels with non-positive Jacobian determinant obtained by ANTs-c1, VM, LapIRN, ProbMultilayer, and MDReg-Net were
9,571, 3.68, 2,585, 0.26, and 0.089, respectively
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voxel-to-voxel velocity fields of diffeomorphic spatial transformations

for registering images by maximizing their image-wise similarity met-

ric, similar to conventional image registration algorithms. To facilitate

learning of large diffeomorphic deformations between images, a

multi-resolution strategy is adopted to jointly optimize and estimate

velocity fields of spatial transformations at different spatial resolu-

tions incrementally with an integrated spatial Gaussian smoothing ker-

nel. The experimental results based on 3D structural brain MR images

F IGURE 6 Example images before and after the image registration, obtained by the image registration algorithms under comparison on
Mindboggle-101 datasets. (a) Fixed image, moving image, and warped moving images by NiftyReg, ANTs-c1, VoxelMorph (VM), LapIRN,
ProbMultilayer, and our method (MDReg-Net). (b) Segmentations of fixed and moving image, and warped segmentation of moving image by

different registration methods. (c) Deformation fields obtained by ANTs-c1, VM, LapIRN, ProbMultilayer, and MDReg-Net to register the moving
image to the fixed image. Deformation in each spatial dimension is mapped to one of the RGB color channels for the visualization. (d) Jacobian
determinant maps of the deformation fields shown in (c). Localized clusters of voxels with non-positive Jacobian determinant are pointed out by
the arrows. The average numbers of voxels with non-positive Jacobian determinant obtained by ANTs-c1, VM, LapIRN, ProbMultilayer, and
MDReg-Net were 4,349, 0.58, 2,009, 0.03 and 0, respectively

TABLE 2 Average runtime to register one pair of images by different registration methods

Methods NiftyReg ANTs (SyN) VoxelMorph LapIRN ProbMultilayer MDReg-Net (CPU) MDReg-Net

Avg. time (s) 257 1,071 3.82 6.46 4.29 74.07 4.67

Note: NiftyReg, ANTs, and MDReg-Net (CPU) run on one Intel Xeon E5-2660 CPU, while VoxelMorph, ProbMultilayer, and our method (MDReg-Net) run

on one NVIDIA TITAN Xp GPU, and LapIRN run on one NVIDIA TITAN RTX GPU.

F IGURE 7 (a) Dice score and number of
voxels with non-positive JΦ vð Þj j in the obtained
deformation fields of the PING validation dataset
by MDReg-Net without the spatial smoothing
layer using different λ values. The registration
model with λ¼1:0 was adopted for the following
ablation evaluation. (b) Number of voxels with
non-positive JΦ vð Þj j in the obtained deformation
fields of the ADNI 1 dataset using MDReg-Net
without and with the spatial smoothing layer,
respectively
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have demonstrated that our method could obtain diffeomorphic

image registration with better performance than state-of-the-art

image registration algorithms, including those built upon multi-stage

and multi-resolution image registration strategies (Avants et al., 2011;

Liu et al., 2019; T. C. Mok & Chung, 2020b).

In order to achieve accurate image registration, multi-stage and

multi-resolution image registration strategies have been adopted in

deep learning-based image registration methods. Particularly, deep

learning methods have been developed to perform coarse-to-fine

image registration to account for large anatomical variations (de Vos

et al., 2019; Hering et al., 2019; Zhao et al., 2019). The multi-stage

and multi-resolution image registration methods are typically

implemented with multiple sub-networks, each of them being trained

separately with the preceding sub-networks fixed (de Vos et al., 2019;

Hering et al., 2019); Cascaded networks are utilized to achieve an

end-to-end multi-stage image registration, with all sub-networks

being focusing on images at a single image resolution (Zhao

et al., 2019). Moreover, these deep learning-based image registration

methods are not equipped to achieve diffeomorphic image registra-

tion. To achieve the diffeomorphic image registration, deep supervi-

sion has been used to optimize image similarity at different spatial

resolutions in recent studies (Krebs et al., 2019; Liu et al., 2019). How-

ever, these methods learn the deformations at different resolutions

separately. In contrast, our method learns deformation velocity fields

at multiple spatial resolutions jointly to optimize the image registra-

tion spatial transformations from coarse to fine resolutions incremen-

tally, with the velocity fields estimated at a coarse resolution being

used to warp the moving image to generate an input image for subse-

quent sub-networks to estimate residual velocity fields for spatial

transformations at finer resolutions. Comparison results have demon-

strated that our method achieved better diffeomorphic image registra-

tion performance than the most successful conventional and deep

learning-based multi-resolution image registration algorithms (Avants

et al., 2011; Liu et al., 2019; T. C. Mok & Chung, 2020b), indicating

that the incremental, multiple-resolution image registration strategy

creates a competitive advantage for multi-resolution image

registration.

We have evaluated our method using different brain structural

image datasets with manually labeled anatomical segmentations avail-

able. These segmentations contains fine-grained anatomical struc-

tures, which are favored over brain tissue segmentation or coarse-

grained segmentation for the evaluation of registration accuracy as

suggested in literature (Rohlfing, 2011). Given that high region

overlap-based accuracy (such as Dice score) does not necessarily indi-

cate biologically plausible deformations as folding voxels within

regions could also result in high overlap index, we have also investi-

gated the diffeomorphic property of the deformations obtained by

different methods. As summarized in Table 1, our method obtained

registration accuracy comparable to that obtained by ANTs, which is

one top ranked diffeomorphic registration method, while our method

obtained deformation fields with a much smaller number of folding

voxels than those obtained by ANTs and other methods under com-

parison. As summarized in Table 2, deep learning methods on GPUs

were much faster than conventional image registration algorithms on

CPUs to register brain images, and our method was also faster than

conventional registration algorithms when run on CPUs, attributed to

its nature of learning-based registration method. All these results indi-

cated that deep learning-based image registration methods can

achieve faster image registration on GPUs than the conventional iter-

ative optimization-based image registration algorithms that are not

optimized for GPU-based computation. It merits further investigation

to explore if the neural network architecture adopted in the deep

learning-based image registration algorithms can be optimized to

improve both the image registration accuracy and the computational

efficiency.

Our method obtained improved accuracy compared with

VoxelMorph, which is a state-of-the-art deep learning-based dif-

feomorphic registration model with similar deformation regularity and

computational efficiency. This indicates that our incremental learning

strategy could facilitate a better characterization of deformation

TABLE 3 Average dice score, number, and percentage of voxels with non-positive Jacobian determinant for the proposed MDReg-Net
without/with spatial smoothing layer on two testing datasets

Methods

MALC Mindboggle-101

Avg. Dice JΦj j≤0 (#) JΦj j≤0 (%) Avg. Dice JΦj j≤0 (#) JΦj j≤0 (%)

MDReg-Net w/o s (λ¼0:5, PING) 0.592 (0.181) 19.18 (20.85) 1.2e�3 (1.3e�3) 0.539 (0.099) 2.59 (3.79) 4.4e�4 (6.4e�4)

MDReg-Net w/o s (λ¼0:5, ADNI1) 0.590 (0.181) 15.5 (11.5) 9.4e�4 (7.0e�4) 0.543 (0.095) 1.28 (2.17) 2.2e�4 (3.7e�4)

MDReg-Net w/o s (λ¼1:0, PING) 0.583 (0.181) 0.029 (0.172) 1.8e�6 (1.0e�5) 0.527 (0.095) 0.14 (1.14) 2.4e�5 (1.9e�4)

MDReg-Net w/o s (λ¼1:0, ADNI1) 0.580 (0.180) 0.088 (0.515) 5.4e�6 (3.1e�5) 0.523 (0.094) 0 (0) 0 (0)

MDReg-Net (PING) 0.588 (0.180) 0.089 (0.515) 5.4e�6 (3.1e�5) 0.534 (0.094) 0 (0) 0 (0)

MDReg-Net (ADNI1) 0.587 (0.172) 0.029 (0.172) 1.8e�6 (1.0e�5) 0.530 (0.092) 0.07 (0.7) 1.2e�5 (1.2e�4)

MDReg-Net (PING, inverse) 0.586 (0.180) 0.235 (0.855) 1.4e�5 (5.2e�5) 0.534 (0.092) 0.05 (0.359) 8.7e�6 (6.2e�5)

MDReg-Net (ADNI1, inverse) 0.585 (0.178) 0.029 (0.172) 1.8e�6 (1.0e�5) 0.532 (0.091) 0 (0) 0 (0)

Note: The registration performance on images registered with the deformation fields computed in the opposite direction based on the same velocity fields

are referred as MDReg-Net (inverse). The SDs are shown in parentheses. The average and standard deviation of Dice score were calculated over all

anatomical structures and subjects. The statistics of voxels with non-positive Jacobian determinant were calculated within brain region.
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between images. Compared with VoxelMorph, our method obtained

more stable and accurate image registration models based on differ-

ent brain image datasets with substantially different age distributions

(younger than 20 vs. older than 60 years), indicating that our method

is not sensitive to the training data though the age distributions of the

subjects from the PING cohort and the ADNI cohort are different.

Our method also obtained improved accuracy compared with

ProbMultilayer network that adopts a multi-layer network structure

to capture spatial transformation at different spatial resolutions, dem-

onstrating the effectiveness of our incremental learning strategy. Our

method also obtained improved accuracy compared with LapIRN that

adopts a similar multi-resolution strategy as our model. However,

LapIRN’s network architecture is quite different from ours and it also

incorporates auto-context and skip connections into its registration

network, which makes it difficult to interpret what modules contribute

to the performance gains without ablation results. LapIRN could

obtain improved registration accuracy for brain subcortical structures,

but not for those in cerebral cortex (T. C. Mok & Chung, 2020b), con-

sistent with our findings in the present study (Figures 5b and 6b).

Due to anatomical differences between images to be registered,

the diffeomorphic image registration is often achieved at the cost of

sacrificing the image registration accuracy in the current image regis-

tration framework which relies on regularization to produce spatially

smooth and plausible deformation fields (Sotiras et al., 2013;

Viergever et al., 2016). Although larger regularization parameters pro-

duced image registration models that could register images with

smoother deformation fields, those producing image registration

models to achieve the diffeomorphic image registration for the train-

ing data did not necessarily yield diffeomorphic image registration for

the testing data and the discrepancy was prominent for the models

trained without the spatial smoothing layer, as indicated by the results

shown in Figures 2 and 7a as well as in Tables 1 and 3. This is because

the regularization parameter could adjust the network parameters

during the network training to yield spatially smooth deformation

fields but does not directly regularize the deformation fields for regis-

tering testing image pairs during inference. The regularization effect is

likely to vanish when there exists large discrepancy in morphometry

and appearance between the testing and training data. In contrast, the

spatial smoothing layer always carries out the smoothing operation in

the same way no matter when applied to training or testing images.

As indicated by the results summarized in Table 1, the MDReg-Net

model with the spatial smoothing layer trained on the PING dataset

achieved perfect diffeomorphic image registration on the

Mindboggle-101 dataset without sacrificing the image registration

accuracy, compared with alternative state-of-the-art image registra-

tion algorithms, including ANTs and VoxelMorph. Compared with the

MDReg-Net models without the spatial smoothing layer, the MDReg-

Net models with the spatial smoothing layer achieved better image

registration accuracy and close to perfect diffeomorphic image regis-

tration, as indicated by the results summarized in Table 3. Moreover,

the results summarized in Table 3 also demonstrated that the

predicted velocity fields performed well in the opposite direction-

based image registration and no significant differences were observed

in the registration performance between the two opposite directions

for registering images, demonstrating the good inverse consistency of

our method. All these results indicated that the spatial smoothing

layer could enhance diffeomorphic image registration.

While registration accuracy (such as Dice score) and

diffeomorphism reflect the registration performance in different

aspects, their priorities may be dependent on different applications.

Although a more accurate (measured in terms of Dice score) image

registration is achievable without persevering the diffeomorphism as

demonstrated in image registration results summarized in Table 3, the

diffeomorphic image registration is desired for applications where

image topology has to be preserved, such as accurately localizing cor-

tical areas in neuroimaging studies of neuropsychiatric disorders that

do not change the brain structures dramatically as tumors. Particularly,

it is desired to register cortical structures of different subjects without

folding or distortion, as the topological and geometrical properties of

cortical structures may be inherently associated with behaviors and

neuropsychiatric disorders (Luders et al., 2004; Madan &

Kensinger, 2016; Nicastro et al., 2020). Our method achieved nearly

perfect diffeomorphic brain image registration with comparable Dice

scores to ANT-c1. While loosening the constraint of absolute

diffeomorphism, an image registration model trained with a smaller

smooth regularization parameter obtained similar Dice scores as ANT-

c1, but with much less negative Jacobian voxels, as shown in Table 3.

On the other hand, the Dice scores of ANTs decreased significantly

with a larger regularization parameter (ANT-c2), and the number of

voxels with non-positive Jacobian determinant were much larger than

that obtained by our method, indicating that our method could

achieve improved Dice scores when the diffeomorphic properties are

at the same level. It has been demonstrated that surface-based image

registration methods achieved substantially better performance than

conventional volume-based image registration methods (Coalson, Van

Essen, & Glasser, 2018). Our method provides an alternative means to

achieve fast, accurate, and nearly perfect diffeomorphic brain image

registration, facilitating computationally efficient brain image registra-

tion and brain mapping in large scale neuroimaging studies of brain

development and neuropsychiatric disorders.

The present framework for diffeomorphic image registration

could obtain image registration results within seconds with higher

accuracy than state-of-the-art image registration algorithms without

diffeomorphism violation, however, potential refinements in the fol-

lowing aspects may further improve the registration performance.

First, the architecture and parameter setting of the networks used

could be further optimized. Second, stationary velocity fields were

adopted to model spatial transformations currently, which may have

inferior performance for charactering large deformations that are

needed in certain scenarios, such as modeling morphology of develop-

ing and aging brains. Using time-varying velocity fields (Beg, Miller,

Trouvé, & Younes, 2005) to model spatial transformations merits

investigation. Finally, the regularization-based image registration

framework may be replaced with a constrained optimization frame-

work to train a deep learning model with diffeomorphic image regis-

tration constraints for gaining further improvement.
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In summary, we have developed a deep learning method, referred

to as MDReg-Net, for diffeomorphic image registration, and experi-

mental results have demonstrated MDReg-Net could obtain robust,

diffeomorphic, albeit not perfect, brain image registration for different

datasets.

ACKNOWLEDGMENTS

This work was supported in part by National Institutes of Health

grants [grant numbers EB022573, and AG066650]. ADNI data collec-

tion and sharing for this project was funded by the Alzheimer’s Dis-

ease Neuroimaging Initiative (ADNI) (National Institutes of Health

Grant U01 AG024904) and DOD ADNI (Department of Defense

award number W81XWH-12-2-0012). ADNI is funded by the

National Institute on Aging, the National Institute of Biomedical Imag-

ing and Bioengineering, and through generous contributions from the

following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discov-

ery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-

Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Phar-

maceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La

Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE

Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research &

Development, LLC.; Johnson & Johnson Pharmaceutical Research &

Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso

Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies;

Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging;

Servier; Takeda Pharmaceutical Company; and Transition Therapeu-

tics. The Canadian Institutes of Health Research is providing funds to

support ADNI clinical sites in Canada. Private sector contributions are

facilitated by the Foundation for the National Institutes of Health

(www.fnih.org). The grantee organization is the Northern California

Institute for Research and Education, and the study is coordinated by

the Alzheimer’s Therapeutic Research Institute at the University of

Southern California. ADNI data are disseminated by the Laboratory

for Neuro Imaging at the University of Southern California.

CONFLICT OF INTEREST

The authors have declared no conflicts of interest for this article.

ETHICS STATEMENT

This research study was conducted retrospectively using human sub-

ject data made available in open access. IRB approval was obtained to

carry out the reported study.

DATA AVAILABILITY STATEMENT

Imaging data and source code are available upon request. Source code

will be made publicly available at www.nitrc.org and GitHub.

ORCID

Hongming Li https://orcid.org/0000-0001-6934-1928

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., … Isard, M.

(2016). TensorFlow: A system for large-scale machine learning.In Paper

presented at the 12th USENIX symposium on operating systems design

and implementation (OSDI ‘16), Savannah, GA. Retrieved from https://

www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf.

Ashburner, J. (2007). A fast diffeomorphic image registration algorithm.

NeuroImage, 38(1), 95–113. https://doi.org/10.1016/j.neuroimage.

2007.07.007

Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C.

(2011). A reproducible evaluation of ANTs similarity metric perfor-

mance in brain image registration. NeuroImage, 54(3), 2033–2044.
https://doi.org/10.1016/j.neuroimage.2010.09.025

Beg, M. F., Miller, M. I., Trouvé, A., & Younes, L. (2005). Computing large

deformation metric mappings via geodesic flows of diffeomorphisms.

International Journal of Computer Vision, 61(2), 139–157.
Chen-Yu, L., Saining, X., Patrick, G., Zhengyou, Z., & Zhuowen, T. (2014).

Deeply-supervised nets. CoRR, 3(4), 93.

Coalson, T. S., Van Essen, D. C., & Glasser, M. F. (2018). The impact of tra-

ditional neuroimaging methods on the spatial localization of cortical

areas. Proceedings of the National Academy of Sciences of the

United States of America, 115(27), E6356–E6365. https://doi.org/10.
1073/pnas.1801582115

Dalca, A. V., Balakrishnan, G., Guttag, J., & Sabuncu, M. R. (2018).

Unsupervised learning for fast probabilistic diffeomorphic registration.

In Paper Presented at the International Conference on Medical Image

Computing and Computer-Assisted Intervention.

Dalca, A. V., Balakrishnan, G., Guttag, J., & Sabuncu, M. R. (2019).

Unsupervised learning of probabilistic diffeomorphic registration for

images and surfaces. Medical Image Analysis, 57, 226–236. https://doi.
org/10.1016/j.media.2019.07.006

de Vos, B. D., Berendsen, F. F., Viergever, M. A., Sokooti, H., Staring, M., &

Isgum, I. (2019). A deep learning framework for unsupervised affine

and deformable image registration. Medical Image Analysis, 52, 128–
143. https://doi.org/10.1016/j.media.2018.11.010

Eppenhof, K. A. J., Lafarge, M. W., Veta, M., & Pluim, J. P. W. (2019). Pro-

gressively trained convolutional neural networks for deformable image

registration. IEEE Transactions on Medical Imaging, 39, 1594–1604.
https://doi.org/10.1109/TMI.2019.2953788

Fan, Y., Jiang, T., & Evans, D. J. (2002). Medical image registration using

parallel genetic algorithms. Applications of Evolutionary Computing,

2279, 304–314.
Fischl, B. (2012). FreeSurfer. NeuroImage, 62(2), 774–781. https://doi.org/

10.1016/j.neuroimage.2012.01.021

Hering, A., van Ginneken, B., & Heldmann, S. (2019). mlVIRNET: Multilevel

Variational image registration network. In Paper Presented at the Inter-

national Conference on Medical Image Computing and Computer-Assisted

Intervention.

Jaderberg, M., Simonyan, K., & Zisserman, A. (2015). Spatial transformer

networks. In Paper Presented at the Advances in Neural Information

Processing Systems.

Jernigan, T. L., Brown, T. T., Hagler, D. J., Jr., Akshoomoff, N., Bartsch, H.,

Newman, E., … Schork, N. (2016). The pediatric imaging, neuro-

cognition, and genetics (PING) data repository. NeuroImage, 124,

1149–1154.
Kim, B., Kim, J., Lee, J.-G., Kim, D. H., Park, S. H., & Ye, J. C. (2019).

Unsupervised deformable image registration using cycle-consistent

CNN. In Paper Presented at the International Conference on Medical

Image Computing and Computer-Assisted Intervention.

Kingma, D., & Ba, J. (2014). Adam: A method for stochastic optimization.

arXiv Preprint arXiv:1412.6980.

Klein, A., & Tourville, J. (2012). 101 labeled brain images and a consistent

human cortical labeling protocol. Frontiers in Neuroscience, 6, 171.

https://doi.org/10.3389/fnins.2012.00171

Klein, S., Staring, M., Murphy, K., Viergever, M. A., & Pluim, J. P. W. (2010).

Elastix: A toolbox for intensity-based medical image registration. IEEE

Transactions on Medical Imaging, 29(1), 196–205. https://doi.org/10.
1109/TMI.2009.2035616

2230 LI ET AL.

http://www.fnih.org
https://orcid.org/0000-0001-6934-1928
https://orcid.org/0000-0001-6934-1928
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.1073/pnas.1801582115
https://doi.org/10.1073/pnas.1801582115
https://doi.org/10.1016/j.media.2019.07.006
https://doi.org/10.1016/j.media.2019.07.006
https://doi.org/10.1016/j.media.2018.11.010
https://doi.org/10.1109/TMI.2019.2953788
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.3389/fnins.2012.00171
https://doi.org/10.1109/TMI.2009.2035616
https://doi.org/10.1109/TMI.2009.2035616


Krebs, J., Delingette, H., Mailhé, B., Ayache, N., & Mansi, T. (2019). Learn-

ing a probabilistic model for diffeomorphic registration. IEEE Transac-

tions on Medical Imaging, 38(9), 2165–2176.
Krebs, J., Mansi, T., Delingette, H., Zhang, L., Ghesu, F., Miao, S., …

Kamen, A. (2017). Robust non-rigid registration through agent-based

action learning. In Paper Presented at the Medical Image Computing and

Computer Assisted Interventions (MICCAI).

Kuang, D., & Schmah, T. (2019). Faim—a convnet method for unsupervised

3d medical image registration. In Paper Presented at the International

Workshop on Machine Learning in Medical Imaging.

Landman, B., & Warfield, S. (2012). MICCAI 2012 workshop on multi-atlas

labeling. In Paper Presented at the Medical Image Computing and Com-

puter Assisted Intervention Conference.

Lei, Y., Fu, Y., Wang, T., Liu, Y., Patel, P., Curran, W. J., … Yang, X. (2020).

4D-CT deformable image registration using multiscale unsupervised

deep learning. Physics in Medicine & Biology, 65(8), 085003.

Li, H., & Fan, Y. (2017). Non-rigid image registration using fully con-

volutional networks with deep self-supervision. arXiv Preprint arXiv:

1709.00799.

Li, H., & Fan, Y. (2018, 4–7 April). Non-rigid image registration using self-

supervised fully convolutional networks without training data. In Paper

Presented at the 2018 IEEE 15th International Symposium on Biomedical

Imaging (ISBI 2018).

Liu, L., Hu, X., Zhu, L., & Heng, P.-A. (2019). Probabilistic multilayer regular-

ization network for unsupervised 3D brain image registration. In Paper

Presented at the International Conference on Medical Image Computing

and Computer-Assisted Intervention.

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks

for semantic segmentation. In Paper Presented at the Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition.

Luders, E., Narr, K. L., Thompson, P. M., Rex, D. E., Jancke, L.,

Steinmetz, H., & Toga, A. W. (2004). Gender differences in cortical

complexity. Nature Neuroscience, 7(8), 799–800. https://doi.org/10.

1038/nn1277

Madan, C. R., & Kensinger, E. A. (2016). Cortical complexity as a measure

of age-related brain atrophy. NeuroImage, 134, 617–629.
Mansilla, L., Milone, D. H., & Ferrante, E. (2020). Learning deformable reg-

istration of medical images with anatomical constraints. Neural Net-

works, 124, 269–279.
Modat, M., Ridgway, G. R., Taylor, Z. A., Lehmann, M., Barnes, J.,

Hawkes, D. J., … Ourselin, S. (2010). Fast free-form deformation using

graphics processing units. Computer Methods and Programs in Biomedi-

cine, 98(3), 278–284.
Mok, T. C., & Chung, A. (2020a). Fast symmetric diffeomorphic image reg-

istration with convolutional neural networks. arXiv Preprint arXiv:

2003.09514.

Mok, T. C., & Chung, A. C. (2020b). Large deformation diffeomorphic

image registration with Laplacian pyramid networks. In: Paper Pres-

ented at the International Conference on Medical Image Computing and

Computer-Assisted InterventionPlaceholder Text.

Nicastro, N., Malpetti, M., Cope, T. E., Bevan-Jones, W. R., Mak, E.,

Passamonti, L., … O’Brien, J. T. (2020). Cortical complexity analyses

and their cognitive correlate in Alzheimer’s disease and

frontotemporal dementia. Journal of Alzheimer's Disease, 76(1),

331–340.
Niethammer, M., Kwitt, R., & Vialard, F.-X. (2019). Metric learning for

image registration. In: Paper Presented at the Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition.

Rohé, M.-M., Datar, M., Heimann, T., Sermesant, M., & Pennec, X. (2017).

SVF-net: Learning deformable image registration using shape

matching. In: Paper Presented at the MICCAI 2017-the 20th

International Conference on Medical Image Computing and Computer

Assisted Intervention.

Rohlfing, T. (2011). Image similarity and tissue overlaps as surrogates for

image registration accuracy: Widely used but unreliable. IEEE Transac-

tions on Medical Imaging, 31(2), 153–163.
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional net-

works for biomedical image segmentation. In Paper Presented at the

International Conference on Medical Image Computing and Computer-

Assisted Intervention.

Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L. G., Leach, M. O., &

Hawkes, D. J. (1999). Nonrigid registration using free-form deforma-

tions: Application to breast MR images. IEEE Transactions on Medical

Imaging, 18(8), 712–721. https://doi.org/10.1109/42.796284
Sokooti, H., Vos, B., Berendsen, F., Lelieveldt, B. P. F., Išgum, I., &

Staring, M. (2017). Nonrigid image registration using multi-scale 3D

convolutional neural networks. In Paper Presented at the Medical Image

Computing and Computer-Assisted Intervention, Quebec,Canada.

Sotiras, A., Davatzikos, C., & Paragios, N. (2013). Deformable medical

image registration: A survey. IEEE Transactions on Medical Imaging,

32(7), 1153–1190. https://doi.org/10.1109/Tmi.2013.2265603

Viergever, M. A., Maintz, J. B. A., Klein, S., Murphy, K., Staring, M., &

Pluim, J. P. W. (2016). A survey of medical image registration—Under

review. Medical Image Analysis, 33, 140–144. https://doi.org/10.

1016/j.media.2016.06.030

Vishnevskiy, V., Gass, T., Szekely, G., Tanner, C., & Goksel, O. (2017). Iso-

tropic Total variation regularization of displacements in parametric

image registration. IEEE Transactions on Medical Imaging, 36(2), 385–
395. https://doi.org/10.1109/TMI.2016.2610583

Wu, G., Kim, M., Wang, Q., Munsell, B. C., & Shen, D. (2016). Scalable

high-performance image registration framework by unsupervised deep

feature representations learning. IEEE Transactions on Biomedical Engi-

neering, 63(7), 1505–1516. https://doi.org/10.1109/TBME.2015.

2496253

Yang, X., Kwitt, R., Styner, M., & Niethammer, M. (2017). Quicksilver: Fast

predictive image registration - a deep learning approach. NeuroImage,

158, 378–396. https://doi.org/10.1016/j.neuroimage.2017.07.008

Yoo, I., Hildebrand, D. G., Tobin, W. F., Lee, W.-C. A., & Jeong, W.-K.

(2017). ssEMnet: Serial-section electron microscopy image registration

using a spatial transformer network with learned features. arXiv Pre-

print arXiv:1707.07833.

Yu, H., Jiang, H., Zhou, X., Hara, T., Yao, Y., & Fujita, H. (2020).

Unsupervised 3D PET-CT image registration method using a metabolic

constraint function and a multi-domain similarity measure. IEEE Access,

8, 63077–63089. https://doi.org/10.1109/ACCESS.2020.2984804
Zhang, S., Liu, P. X., Zheng, M., & Shi, W. (2020). A diffeomorphic

unsupervised method for deformable soft tissue image registration.

Computers in Biology and Medicine, 120, 103708.

Zhao, S., Lau, T., Luo, J., Chang, E. I., & Xu, Y. (2019). Unsupervised 3D

end-to-end medical image registration with volume Tweening net-

work. IEEE Journal of Biomedical and Health Informatics, 24, 1394–
1404. https://doi.org/10.1109/JBHI.2019.2951024

How to cite this article: Li, H., Fan, Y., & for the Alzheimer’s
Disease Neuroimaging Initiative (2022). MDReg-Net:

Multi-resolution diffeomorphic image registration using fully

convolutional networks with deep self-supervision. Human

Brain Mapping, 43(7), 2218–2231. https://doi.org/10.1002/

hbm.25782

LI ET AL. 2231

https://doi.org/10.1038/nn1277
https://doi.org/10.1038/nn1277
https://doi.org/10.1109/42.796284
https://doi.org/10.1109/Tmi.2013.2265603
https://doi.org/10.1016/j.media.2016.06.030
https://doi.org/10.1016/j.media.2016.06.030
https://doi.org/10.1109/TMI.2016.2610583
https://doi.org/10.1109/TBME.2015.2496253
https://doi.org/10.1109/TBME.2015.2496253
https://doi.org/10.1016/j.neuroimage.2017.07.008
https://doi.org/10.1109/ACCESS.2020.2984804
https://doi.org/10.1109/JBHI.2019.2951024
https://doi.org/10.1002/hbm.25782
https://doi.org/10.1002/hbm.25782

	MDReg-Net: Multi-resolution diffeomorphic image registration using fully convolutional networks with deep self-supervision
	1  INTRODUCTION
	2  METHODS
	2.1  Image registration by optimizing an image similarity metric
	2.2  Multi-resolution diffeomorphic image registration with deep self-supervision
	2.3  Network architecture for estimating the velocity fields

	3  EVALUATION AND EXPERIMENTAL SETTINGS
	3.1  Image datasets
	3.2  Evaluation metrics
	3.3  Network training
	3.4  Comparison with state-of-the-art image registration algorithms and ablation studies

	4  EXPERIMENTAL RESULTS
	4.1  Optimal parameter setting
	4.2  Quantitative performance of image registration algorithms under comparison

	5  DISCUSSION AND CONCLUSIONS
	ACKNOWLEDGMENTS
	  CONFLICT OF INTEREST
	  ETHICS STATEMENT
	  DATA AVAILABILITY STATEMENT

	REFERENCES


